Decomposition of Graphs:
Depth First Search

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Graph Algorithms
Data Structures and Algorithms


https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

@ Graphs



Graphs

V = {A B, C,D}
E= {(A7 B)v (C7 D)? (CvA)7 (Bv C)}

V = {A,B,C,D)}
E ={({A, B},3),({A D},1),
({B,D},2),({C, D}, -1),({A, C},2)}




Ways to Represent

edge adjacency adjacency
list matrix list

G'G AOl% AlB

(S BOOl@
C000

©



Ways to Represent

edge . adjacency ; adjacency
list ' matrix list
0» s3] B
BOO 1f:
C 000]: @
| ©
space O(|El) - O(IVP) e(lV|+|E])
(u,v) € E? O(lEl) - 0(1) deg(u)

neighborsofui O(|E]) - O(|V]) ¢ deg(u)



Sparse and Dense Graphs

dense graph sparse graph

o




Sparse and Dense Graphs

dense graph sparse graph

# edges  O(|V[) O(|V])
average degree O(|V]) (1)

adj. matrix  ©(|V|?) o(|V]?)
adj. list  ©(|V]?) o(|V|)



Outline

@® Depth First Search in Undirected Graphs



Explore(v)

{Input: a node v of a graph
G=(V,E).}
{Output: visited[u] = true for all
nodes u reachable from v.}
visited|v] < true
Previsit(v)
for each edge (v,u) € E:
if visited[u] = false:
Explore(u)
Postvisit(v)



Formal Proof

m Clearly only vertices reachable from v are
visited.



Formal Proof

m Clearly only vertices reachable from v are
visited.

m To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.



Formal Proof

Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.



Formal Proof

Clearly only vertices reachable from v are
visited.

To show that all of them are visited assume, for
the sake of contradiction, that a vertex u is
reachable from v but was not visited.

Take any path from v to u and denote by z the
last vertex on this path that was visited and by
w its subsequent vertex.

Hence Explore was not called for w while
Faratinog aver the neichhare of >



Depth-First Search
DFS(G)
for all ve V:
visited|v] < false

for all ve V:
if visited[v] = false:
Explore(v)



Depth-First Search
DFS(G)

for all ve V:
visited|v] < false

for all ve V:
if visited[v] = false:
Explore(v)

Running time: O(|V| + |E]) since Explore
is called exactly once for each vertex v € V
and each edee ic examined either once (for



Connected Components

A connected component of un undirected
graph is an inclusion-wise maximal subset of
vertices such that there is a path between
any two of them.

bde



Connected Components

A connected component of un undirected
graph is an inclusion-wise maximal subset of
vertices such that there is a path between
any two of them.

§de



Finding Connected Components

Previsit(v)  DFS(G)

ccnum|v] + cc cc+0
for all ve V:
visited|v] «+ false
ccnum|v] < —1
for all ve V:
if visited[v] = false:
cc4cc+1
Explore(v)



Outline

© Depth-First Search in Directed Graphs



Previsit and Postvisit Orderings

Previsit(v)

pre[v] < clock
clock < clock +1

Postvisit(v)

post[v] < clock
clock <« clock + 1



Types of Edges

B

O >

FDHA



Types of Edges

Types of edges:
m tree edge: (A, C), (C,E),

(¢, F). (B,D)
Qe
m forward edge: (A, F)
m cross edge: (B, C), (F,E) "

m back edge: (E,A)

1 2 3 4 5 6 7 8 9 10 11 12
C i FDH

FEH FF4



Types of edges

tree/forward edge (u, v):
I u i
v

back edge (u, v):
I u i

74

cross (u, v):
—_V — —_ —



Directed acyclic graphs

Lemma

A directed graph has a cycle if and only if its
depth-first search reveals a back edge.

Proof

= If (u, v) is a back edge, then there
is a path from v to u in DFS tree.



Directed acyclic graphs
Lemma

A directed graph has a cycle if and only if its
depth-first search reveals a back edge.

Proof

= If (u, v) is a back edge, then there
is a path from v to u in DFS tree.

<~ Letuy = up — ... = ux — uy be
a cycle and assume w.l.0.g. that u;
is the first vertex Fxplore was



Topological ordering

A topological ordering of a directed graph is
a linear ordering of its vertices such that for
any edge (u,v), u comes before v.




Lemma

A directed graph can be linearized iff it is a
DAG.

Proof

= If there is a cycle the graph cannot
be linearized.



Lemma

A directed graph can be linearized iff it is a
DAG.

Proof

= If there is a cycle the graph cannot
be linearized.

< Each DAG contains at least one
source (a vertex with no incoming
edges) and at least one sink (no
outgoing edges). This suggests the

o | P DT Y S



Example

Visualization:
http://www.cs.usfca.edu/"galles/
visualization/TopoSortIndegree.html


http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html
http://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html

Lemma

In a DAG every edge leads to a vertex with a
lower post number.

Proof

If post[v] > post[u] for an edge (u, v) then
(u, v) is a back edge.
tree/forward edge (u, v):

u
4

back edge (u, v):
I u i




Example

36 27
EF=E@
112 8,11



	Graphs
	Depth First Search in Undirected Graphs
	Depth-First Search in Directed Graphs

